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EXECUTIVE SUMMARY 

This paper presents a basic introduction to some popular stochastic analysis 
methods from an unbiased disciplinary perspective. Examples ranging from fields as 
diverse as defense analysis, cognitive science, and instruction are illustrated throughout 
to demonstrate the variety of applications that benefit from such stochastic analysis 
methods and models. Two applications of longitudinal stochastic analysis methods to 
collaborative and cognitive training environments are discussed in detail. The first appli-
cation applies a combination of latent mixed Markov modeling and multidimensional 
scaling for modeling, analyzing, and supporting the process of online knowledge sharing. 
In the second application, a combination of iterative nonlinear machine learning algo-
rithms is applied to identify latent classes of problem-solving strategies.  

The examples illustrated in this paper are instances of an increasing global trend 
toward interdisciplinary research. As this trend continues to grow, research that takes 
advantage of the gaps and overlaps in analytical methodologies between disciplines will 
save time, effort, and research funds. 
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Applications of Stochastic Analyses  
for Collaborative Learning and Cognitive Assessment 

The growing trend in interdisciplinary graduate programs appropriately breeds 
small developing communities of researchers who close the gaps between mainstream 
fields such as artificial intelligence, statistics, engineering, cognitive science, and psy-
chology. The result is twofold and realizes both advantages and disadvantages. While we 
may discover new applications of existing algorithms and methods, we may also uncover 
similarities among the algorithms and methods that cross discipline boundaries and real-
ize that some effort has been wasted in reinventing the wheel. As an alumnus of an inter-
disciplinary graduate program in applied artificial intelligence, the first author notes that 
she is often struck by the distance between communities that concurrently develop and 
apply identical methods to solve entirely different problems. 

In this paper, we explore statistical and artificial intelligence perspectives on the 
field of stochastic sequence analysis. This field is particularly susceptible to the cross-
discipline effect because of the wide array of analytical possibilities for application. 
Examples throughout this paper, from fields as diverse as defense analysis, cognitive sci-
ence, and instruction, demonstrate the variety of applications that benefit from such sto-
chastic analysis methods and models. 

We begin with an introduction to probabilistic sequential class analysis aimed at 
addressing the terminological inconsistencies among the applied artificial intelligence, 
statistics, and educational psychology communities. This introduction helps explain why, 
for example, the literature in the applied artificial intelligence and biology communities 
on hidden Markov models (HMMs) is largely separate from the comparable body of lit-
erature in the sociological and psychological measurement and statistics communities on 
latent Markov models (Visser, Maartje, Raijmakers, & Molenaar, 2002). 

The second part of this paper illustrates two applications of the methods described 
in the first part. The first application, Encouraging Positive Social Interaction while 
Learning ON-Line (EPSILON), employs a combination of latent mixed Markov mod-
eling and multidimensional scaling (MDS) for modeling, analyzing, and supporting the 
process of online student knowledge sharing. These analysis techniques are used to train 
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a system to dynamically recognize (a) when students are having trouble learning the new 
concepts they share with each other and (b) why they are having trouble. In the second 
application, Interactive Multi-Media EXercises (IMMEX) Collaborative, a combination 
of iterative, nonlinear, machine learning algorithms is applied to identify latent classes of 
student problem-solving strategies. The approach is used to predict students’ future 
behaviors within a scientific inquiry environment and provide targeted nonintrusive 
facilitation. The final section in this paper summarizes these analysis techniques and dis-
cusses how they might benefit other interdisciplinary areas. 

A. INTRODUCTION TO APPLIED PROBABILISTIC CLASS ANALYSES 

This section introduces the analysis methods and terminology that will be used in 
the remainder of this paper. The two artificial intelligence models discussed in this sec-
tion and the next provide the foundation for the cognitive assessment and collaborative 
learning applications to follow. The goal in this paper is not to provide a comprehensive 
overview of probabilistic class analysis methods but, rather, to provide examples of the 
sorts of problems that seem to be amenable to latent class analysis (LCA) but for which 
more advanced methods, such as neural networks or HMMs, might provide a new per-
spective. This section begins with a simple example that lends itself to LCA and moves 
quickly into a discussion of more advanced statistical methods. 

LCA has been used successfully to identify unobserved variables that explain the 
covariation (or nonindependence) within a known set of observed variables. The unob-
served variable is termed latent because it is presumably unknown even though it might 
be hypothesized (McCutcheon, 1987). The result of applying this method should be a 
model in which the latent classes render the observed variables to be locally independent 
of each other. 

The practical application of this method can be explained through a simple 
notional example from the area of defense analysis. Suppose our dataset describes blue 
(friendly force) team reports of red (enemy force) team activities. Each blue report would 
contain observed variables, such as activity type (e.g., weapon detonation, weapon 
emplacement, or movement of weapon components), activity time (e.g., early morning in 
June, late afternoon on Saturday), and location. Blue team reporting may also include 
observables that constrain the scope of the red team’s available tactics, such as their dis-
position (e.g., strength of force, training, morale), equipment, weapons, terrain, and 
weather conditions. 
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We would see covariation among these observed variables and thus hypothesize 
that an unknown variable, such as red team strategy type (e.g., strategy of attrition or 
limited aims), explains why they chose a particular course of action and avoided an alter-
native. For example, an early morning explosion-based attack on the periphery of a small 
village may indicate a red team strategy that is ignorant of the ability of blue team radars 
to detect unusual activity in such areas with little or no “clutter.” Late afternoon rush-
hour activities in large cities involving the movement of weapons and components may 
be more representative of red team strategies that take advantage of the populous urban 
warfare terrain. Confirmatory LCA in this case offers the possibility that an unknown but 
hypothesized latent variable (e.g., red team strategy type) can explain the relations among 
the observed variables to the level of chance covariation (McCutcheon, 1987). 

LCA uses observed data to estimate model parameters. The parameters are deter-
mined iteratively, commonly using an expectation maximization (EM) variant (see 
Baum, 1972; Baum, Petrie, Soules, & Weiss, 1970). They describe the likelihoods of the 
latent classes and the conditional response probabilities for the manifest variables within 
each latent class. For example, a conditional response probability parameter might des-
cribe the likelihood that the enemy who is employing a particular urban warfare strategy 
will emplace a weapon in the early morning at a particular location. 

In the field of artificial intelligence, an array of nonlinear classification methods 
termed unsupervised machine learning algorithms offers approaches similar to LCA. The 
term unsupervised suggests that only the inputs to the model are given, and the goal is to 
discover (or learn, hence machine learning) the output distribution. In contrast, super-
vised methods assume that the conditional output distribution is also given, and the goal 
is to find an optimal mapping between the input and output. 

For neural network analysis, algorithms are available in both the supervised and 
unsupervised forms. From one perspective, models developed using neural network 
analysis are less constrained than those developed using variants of LCA because the 
latent class probabilities and conditional response probabilities do not need to be known 
or estimated. Instead, the class membership of each observed sample feature vector is 
estimated based on a learned, weighted transformation function. In its simplest form, the 
neural network is a nonlinear transformation function that maps a set of weighted input 
variables onto a number of latent classes. The weights on the input variables are esti-
mated by incrementally adjusting them while minimizing the total sum-squared or mean-
squared error. The estimation algorithm is typically a gradient descent derivative such as 
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back-propagation (Looney, 1997). The uniqueness of the method comes from its genesis 
in an early neurocognitive model of the human brain in which neurons in the brain either 
excite and fire (emit a 1) or do not fire (emit a 0) (McCulloch & Pitts, 1943). As such, the 
weighted sum of observed variables in a neural network is subject to a threshold function 
that filters the input and outputs a positive (1) or negative (0 or –1) response for each 
latent class. Continuing with this metaphor, because the threshold function activates the 
neural network nodes that represent the latent classes, it is commonly termed an activa-
tion function. This activation function may take many forms, the most common of which 
is a sigmoid, as shown in Figure 1. The sum, s, in the sigmoid activation function is given 
by a weighted sum of input (observed) variables, where b represents the bias (axis of 
symmetry for s) and α represents the growth rate (steepness of the curve). 

sb

1

y )(1
1

bse
y −−+

= α

 

Figure 1. Sigmoid Activation Function 

Neural networks have been used in cognitive and educational psychology appli-
cations to model student problem-solving strategies (Stevens, Ikeda, Casillas, Palacio-
Cayetano, & Clyman, 1999) and the effectiveness of distributed collaborative interaction 
(Goodman, Linton, Gaimari, Hitzeman, Ross, & Zarrella, 2005). The input to the neural 
network in these cases consists of student activity (e.g., problem-solving actions, errors) 
or factors related to their conversation (e.g., type of speech act, presence of keywords, or 
certain punctuation marks). One application of neural networks combined with HMMs 
(described in the next section) is presented later in this paper. 

LCA and neural network algorithms model systems of variables that remain con-
stant over time and may not be appropriate for classes of problems whose variables 
describe processes that change dynamically. To illustrate, we revisit our earlier notional 
example of blue (friendly force) team responses to red (enemy force) team activities. 
Suppose we became aware that the red team was constantly changing its strategies to 
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accommodate changing conditions and to counteract blue team defensive strategies. 
Activities that the blue team may have easily detected and thwarted might subsequently 
become very difficult to ascertain. Such change in behavior over time is modeled through 
the use of longitudinal stochastic models. 

The maturity of efficient maximum likelihood estimation algorithms enabled the 
development of effective longitudinal stochastic models (such as HMMs, described in the 
next section) that model and predict change over time. These models found some of their 
first applications in modeling learning and human behavior. For example, numerous 
applications of item response theory have successfully been shown to probabilistically 
relate students’ individual characteristics to their responses to specific test items 
(De Boeck & Wilson, 2004). Soller, Martínez-Monés, Jermann, & Muehlenbrock (2005) 
reviewed a number of systems that apply artificial intelligence methodologies to support 
collaborative distance learning; however, the open issues, questions, and application pos-
sibilities still outnumber the research conducted thus far. The next section provides some 
technical background for the longitudinal stochastic latent class model that will be further 
developed through applications in the remainder of this paper. 

B. MODELING STOCHASTIC CHANGE OVER TIME 

1. Overview 

A Markov chain is a useful tool for describing the way that samples taken at con-
secutive time intervals follow a representative path. A mixed Markov model is a mixture 
of a finite number of Markov chains. Mixed Markov models are thus restrictive in that 
each sample must be a member of one of the prescribed paths. The result of a mixed 
Markov analysis might describe the probability that a vector of samples taken from one 
subject is a member of a particular Markov chain describing that subject’s behavior. For 
example, Langeheine & van der Pol (2002) described the utility of mixed Markov model 
analysis in modeling the rate of change-of-life satisfaction for a population across several 
years. The subjects fell into representative groups that were either satisfied or dissatisfied 
with their lives and continued to generally feel the same over time, or they fell into 
groups that changed from feeling generally dissatisfied to gaining some satisfaction or 
vice versa. The mixed Markov model described the likelihood that each subject was a 
member of each group (chain) and exhibited its corresponding behavior. 

Mixed Markov models require that each sample be a member of one of the pre-
scribed paths described by the transition probabilities. Such limitations can be 
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overrestrictive in longitudinal data analyses because individuals may change over time, 
and such models do not allow individuals to move between latent classes over time 
(Vermunt, 2007). The latent transition (or hidden) Markov model lessens the restrictions 
of mixed Markov models by allowing latent transitions, and the latent mixed Markov 
model provides for a mixture of Markov chains with latent transitions. Thus, the response 
probabilities and transition probabilities for the Markov chains in the model can change 
over time. In this way, we are able to model the way that the rate of change for each sub-
ject also changes over time as different temporal variables affect the way in which sub-
jects respond to stimuli. 

The next section presents a brief introduction to hidden Markov modeling to pro-
vide background and context for the applications described in the second half of this 
paper. A more complete formalization can be found in Rabiner (1989). 

2. Hidden Markov Modeling 

In this paper, latent transition and latent mixed Markov models will be referred to 
as hidden Markov models (or HMMs). The term hidden refers to the unobservable 
(latent) doubly stochastic process described by the latent transitions and the stochastic 
distribution of observations at each state. For example, observations might be classifica-
tions of different student problem-solving strategies with state transitions describing the 
likelihoods of transitioning from one general problem-solving strategy to another (e.g., 
on the next problem set or during the next term). In a collaborative distance learning 
environment, observations might be sequences of online chat between students, and state 
transitions might describe the communicative roles of students (e.g., facilitator, critic, 
peer tutor) or the effectiveness of the information sharing and knowledge construction. 

HMMs can be used to perform three fundamental types of analyses: 

1. Estimating a model that best characterizes a set of observations 

2. Explaining sequences of observations, events, or behaviors in terms of latent 
class membership 

3. Predicting the likelihood of future observations, events, or behaviors.  

The model estimation (1)1 is generally done first because the HMM that is the 
output of this step is subsequently used to perform analyses (2) and (3). The Baum-Welch 

                                                 
1  The numbers (1), (2), and (3) in this paragraph refer to the list in the preceding paragraph. 
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or EM algorithms (Baum, 1972; Baum, Petrie, Soules, & Weiss, 1970) are commonly 
used for parameter estimation (1) and prediction (3), and the Viterbi (1967) algorithm is 
commonly used for revealing the most likely sequence of latent classes transited by a 
given observation sequence (2). 

We begin by introducing the HMM terminology and notation. An HMM is speci-
fied by the set of parameters that describe the model’s prior probabilities, state transition 
probabilities, and observation symbol probabilities. At any given time (t1, t2, and so 
forth), the model is understood to be in one of N states: {S1, S2, … SN}. The variable qt 

denotes the state at time t, and the sequence of states traversed by the model is denoted 
by Q = q1, q2, …, qT. 

The matrix of prior probabilities (π) describes the unconditional likelihood of 
each state before beginning the iterative process of parameter estimation known as HMM 
training. The prior probabilities of each state, qi, are given by the initial state distribution, 

]Pr[ 1 iSq ==π . 

The transition probabilities describe the likelihoods of transiting from state i to 
state j, that is, Pr(qj | qi). These values are stored in matrix A = {aij}, where 

]|Pr[ 1 itjtij SqSqa === − . 

The equation above states that the transition matrix describes the probabilities of 
the states qt in the model, given that the previous state was qt-1 (see Figure 2). The way in 
which the HMM stochastically transits through states over time enables it to model 
dynamic temporal processes, such as communication patterns or the shifting of problem-
solving strategies over time. 

aij

Si Sj

timet-1 t  

Figure 2. Illustration of Notation for One HMM State Transition 
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The last set of parameters describes B, the matrix of observation symbol prob-
abilities for each state. Let O define an observation sequence, for example, a patient’s 
changing mood over 6 months: O = {Anxious, Distressed, Sad, Scared, Relieved}. The 
observation symbol probability distribution describes the probabilities of each of the 
observation symbols, O = O1, O2,…, OT for each of the states at each time t. The obser-
vation symbol probability distribution in state j is given by B = {bj(ot)}, where  

]|Pr[)( jttttj SqOoob === . 

O describes the set of all possible observation symbols. 

In the first application described later, the observation symbols are given by 
online chat communication and problem-solving actions, and, in the second application, 
the observation symbols are given by the output of a neural network that describes stu-
dent problem-solving strategies. Figure 3 illustrates an HMM for the notional defense 
analysis example that was described previously. Note how the temporal nature of the 
model accounts for how the unknown red team strategy might shift over time as soldiers 
are trained in different areas and as conditions change. 

0.2 0.1

0.3 0.6

0.1Strategy
A

5% Detonation at airport gates
3.5% Reconnaissance in early AM
1.1% Blowing Sand
0.4% Low morale

8% Late PM weapon movement
6% Training behind Building 6
3% Weapon emplacement on Route 35

0.2

0.5

0.4

Strategy
B

Strategy
C

 

Figure 3. Depiction of HMM for a Notional Defense Analysis Example 

Formally, if we let { }iππ =  describe the initial state distribution, where 
]Pr[ 1 ii Sq ==π , then an HMM (λ) can be fully described as  

λ = (A, B, π), 

where A = {aij}is the state transition matrix for the HMM and B = {bj(ot)} is the obser-
vation symbol probability distribution for each state j.  

The Baum-Welch algorithm (Baum, 1972) is the EM algorithm for computing 
(learning) the maximum likelihood estimate of the HMM parameters, given samples of 
observation vectors. The E step of the algorithm provides the update rules for estimating 
the parameters in A (state probability distribution), and the M step describes the expected 
likelihood that the system will be in a given state and emit a particular observation in 
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B (observation probability distribution). An explanatory presentation of the full 
derivation of the Baum-Welch algorithm can be found in Bilmes (1998). Although the 
algorithm is not guaranteed to converge at the optimal solution (global maximum), it has 
been found to produce good results in practice based on local maxima (Rabiner, 1989). 

After an HMM is estimated from a set of observations, it can be used to explain 
sequences of observations, events, or behaviors in terms of latent class membership, or it 
can be used to predict the likelihood of future observations, events, or behaviors. Because 
examples of both types of analysis are given later, we provide some technical background 
here for both algorithms. The reader who is more application-oriented may skip to the 
next section without loss of continuity. 

Given an HMM, the Viterbi (1967) algorithm finds the most likely latent class 
(state) sequence for a given sequence of observations. This is the problem of finding the 
maximum Pr(Q | O, λ). For a given observation sequence, we describe the probability of 
the most likely state sequence at any time, t, as follows: 

)|,,,,,,,Pr[max)( 2121,,, 121

λδ ttqqqt OOOiqqqi
t

KK
K

==
− . 

To identify the state sequence that produces the maximum likelihood result for 
the entire observation sequence, the algorithm saves the argument that produces the best 
result at each time and state for )(1 jt +δ : 

)(])(max[)( 11 ++ ⋅= tjijtit Obaij δδ . 

Observation sequences that begin the same but diverge over time may produce 
very different state sequences because as observations accumulate, the HMM recalculates 
the most likely state sequence. Thus, it is not always possible to know what state the 
HMM is in (it is hidden). 

The forward-backward procedure is used to estimate the likelihood of an obser-
vation sequence, given an HMM (Rabiner, 1989). This likelihood is denoted )|Pr( λO . 
Let λα |,,...,,Pr()( 21 ittt SqOOOi == . The variable )(itα  is called the forward variable 

and describes the probability of a partial observation sequence (up until time t), given 
model λ . In the first step, we initialize )()(:)( 11 Obii iit παα = . This initializes the forward 
variable as the joint probability of state and the initial observation . The second step 

(induction) is given by the following equation, in which N denotes the number of states in 
the HMM: 

iS 1O
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The sum, , describes the probability of the joint event in which O∑
=

N

i
ijt ai

1
)(α 1, O2, …, Ot 

are observed, the state at time t is Si, and the state Sj is reached at time t+1. In other 
words, it is the probability of being in state Sj at time t+1, accounting for all the accom-
panying previous partial observations. Then, )(1 jt+α  can be determined by multiplying 
this value by . )( 1+tj Ob

The final estimated value of )|Pr( λO  is then given by summing over the terminal 

values: 

∑
=

=
N

i
T iO

1
)()|Pr( αλ
.
 

This completes our technical discussion of stochastic temporal class analysis 
methods. Additional introductory information on similar types of methods can be found 
in Rabiner (1989), Looney (1997), McCutcheon (1987), and Bilmes (1998). The next 
section discusses applications of these methods to the areas of collaborative learning and 
longitudinal cognitive assessment. 

C. APPLICATIONS OF PROBABILISTIC SEQUENTIAL CLASS ANALYSIS 
TO EDUCATIONAL ASSESSMENT 

Applications of probabilistic class analysis to psychology and education are copi-
ous in the literature, with references reaching back as early as the 1950s (Miller, 1952). 
Examples include Greeno’s (1967) Markov chain models of paired-associate learning 
(also see Greeno & Steiner, 1964), Kintsch & Morris’ (1965) Markovian models of recall 
and recognition, Brainerd’s (1979) models of conservation learning, and Wickens’ (1982) 
stochastic models of short- and long-term memory. This section describes two different 
applications in which longitudinal stochastic class analysis methods are used to assist an 
instructor or online coach in assessing and mediating online student interaction with the 
aim of improving the quality of students’ distance learning experiences. 

The first application, EPSILON, applied a combination of hidden Markov mod-
eling and MDS for modeling, analyzing, and supporting the process of online student 
knowledge sharing. These analysis techniques were used to train a system to recognize 
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dynamically (a) when students are having trouble learning the new concepts they share 
with each other and (b) why they are having trouble. 

1. Encouraging Positive Social Interaction while Learning ON-Line (EPSILON) 

The EPSILON project was motivated by the rapid advance of networked collabo-
rative and distance learning technology that has enabled universities and corporations to 
reach across time and space barriers to educate learners. While this technology has 
removed many of the traditional constraints surrounding when, how, and what can be 
learned, the quality of distance learning still falls behind the standards set by structured 
face-to-face learning. The nature of the communication medium itself is partly responsi-
ble because supporting and mediating large numbers of online collaborative learning 
teams would require online instructors to spend an extraordinary amount of time 
reviewing chat, email, and newsgroup discussions. The EPSILON effort aimed to demon-
strate how a computer might assist an online instructor in assessing the effectiveness of 
students’ collaborative learning interaction. The prerequisite for this effort involved 
identifying and understanding the processes involved in distributed collaboration and 
determining the support needed to facilitate and enhance these processes (Soller & Les-
gold, in press). For the remainder of this section, we focus on just one of these processes: 
the process of information sharing. 

From a theoretical standpoint, a group’s ability to share, understand, and construct 
new knowledge is an important predictor of the value of the distributed collaborative 
learning experience. The effectiveness of knowledge construction depends on the partici-
pants’ evolving knowledge bases and the group’s ability to share and assimilate the bits 
of knowledge necessary to construct new knowledge. As information is shared and 
assimilated into the group’s thinking process, group members evolve and develop a com-
mon understanding. From an intuitive standpoint, the knowledge that group members 
bring to bear on the problem and how this knowledge is shared, understood, and further 
developed (or not) ultimately shape both the process and the product of the collaboration. 
This section shows how some of the procedures described in the first part of this paper 
can be applied to analyze the process of knowledge sharing during collaborative distance 
learning activities. 

2. Experimental Design 

The study (Soller, 2004) was designed in the style of traditional Hidden Profile 
studies in social psychology (Lavery, Franz, Winquist, & Larson, 1999; Mennecke, 1997; 
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Stasser, 1999), which are specifically oriented to evaluate the effect of information 
sharing on group performance. Hidden Profile studies require that the knowledge needed 
to perform the task be divided among group members, such that each member’s knowl-
edge is incomplete before the group session begins. The group task is designed so that it 
cannot be successfully completed until all members share their unique knowledge. Group 
performance is typically measured by counting the number of individual knowledge ele-
ments that surface during group discussion and evaluating the group’s solution, which is 
dependent on these elements. Although some studies do suggest that the quality and 
quantity of unique information shared by group members is a significant predictor of the 
quality of the group decision (Hollingshead, 1996; Winquist & Larson, 1998), other 
studies have historically and consistently shown that group members are not likely to dis-
cover their teammates’ hidden profiles (Lavery et al., 1999; Stasser, 1999). Group mem-
bers tend to focus on information that they share in common and tend not to share and 
discuss information they uniquely possess. The aim of the study described in this section 
was to identify the various ways that group members can effectively share information 
with each other and the various ways that they can experience knowledge-sharing break-
downs. The results of this analysis could serve to inform and advise an instructor in 
selecting an appropriate facilitation strategy. 

Twelve groups of three participants each participated in the study; however, the 
sample size was related less to the number of participants than to the amount of conver-
sation about unique knowledge elements. All the subjects [except for two technical staff 
members from a participating Federally Funded Research and Development Center 
(FFRDC)] were undergraduates or first-year graduate students majoring in the physical 
sciences or engineering, and most were not experienced in the domain of Object-Oriented 
Analysis and Design (OOA&D). Each group was asked to solve one problem, using a 
collaborative graphical OOA&D workspace while communicating through a structured 
chat interface. The chat interface contained sets of sentence openers (e.g., “I think,” “I 
agree because”) organized in intuitive categories (e.g., Inform, Request, or Acknowl-
edge) that the students used to indicate (to the system) the general intentions underlying 
their chat contributions. After a brief training and practice period, the students were 
assigned to separate rooms, given individual knowledge elements (described next), and 
took a pre-test. More detailed information about the tool and experimental design can be 
found in Soller (2004). 

As in the Hidden Profile studies described previously, the key knowledge ele-
ments needed to solve the OOA&D problems were distributed among the three students 
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in each group before the problem-solving session started. These three individual knowl-
edge elements represented conceptual elements, such as “Attributes common to a group 
of subclasses should be attached to the superclass and will be inherited by each subclass.” 
The distribution of knowledge elements was intended to reflect the natural distribution of 
knowledge among people with different expertise. While this experimental design does 
not preclude situations in which one student may know a concept while another has a 
deeply rooted misconception, it is perhaps less reflective of such situations because the 
student would need to have the misconception prior to the study. 

The students were pre-tested on all three knowledge elements before the problem-
solving session and post-tested afterward. It was expected that the student given knowl-
edge element #1 would get only pre-test question #1 correct, the student given knowledge 
element #2 would get only pre-test question #2 correct, and the student given knowledge 
element #3 would get only pre-test question #3 correct. To ensure that each student 
understood his unique knowledge element, an experimenter reviewed the pre-test prob-
lem pertaining to each student’s knowledge element before the group exercise. During 
the on-line problem-solving session that followed, the software automatically logged the 
students’ conversation and actions. After the problem-solving session, the subjects com-
pleted a post-test, which assessed the extent to which the students learned the two knowl-
edge elements from their peers. 

The problem-solving session logs were segmented by hand to extract the seg-
ments in which the students shared their unique knowledge elements. A total of 
29 knowledge-sharing episodes were manually identified, and each was classified as 
either an effective knowledge-sharing episode or a knowledge-sharing breakdown.2 The 
manual segmentation procedure involved identifying the main topic of conversation by 
considering both the student dialog and the workspace actions (such as creating or 
augmenting a new graphical OOA&D object), and the classification was based on an 
examination of the pre- and post-test scores. A sequence was considered a knowledge-
sharing breakdown if the knowledge element was discussed during the episode, but none 
of the receiving students demonstrated mastery of the concept on the post test. The 
sequence was considered effective if at least one of the participants learned the concept 
during the session. The 29 knowledge-sharing episodes varied in length from 5 to 49 con-
tributions and contained both conversational elements and OOA&D actions. 

                                                 
2 Ten sequences were identified as effective knowledge-sharing episodes, and 19 sequences were 

identified as examples of knowledge-sharing breakdowns. 

 13 



 

The top part of Figure 4 shows an example of one such episode. The italicized 
sentence openers in the figure were used by the system to automatically code the utter-
ances’ subskills and attributes, which formed the basis for the HMM analysis. The bot-
tom part of Figure 4 shows the corresponding sequence that was used to train the HMMs 
to analyze and classify new instances of knowledge sharing (described in the next 
section). 

<Begins to construct a discriminator on the Collaborative Workspace>A

Let me explain it this way - A car can be 
owned by a person , a company or a bank. 
I think ownership type is the discrinator.

ExplainInformA

Yes, I agree because I myself am not so 
sure as to what its function is

AgreeDiscussC

Can you tell me more about what a 
discriminator is

ElaborationRequestB

I'm not so sureDoubtDiscussC

Do you think we need a discriminator for 
the car ownership

OpinionRequestA
Text ChatAttributeSubskillStudent

<Begins to construct a discriminator on the Collaborative Workspace>A

Let me explain it this way - A car can be 
owned by a person , a company or a bank. 
I think ownership type is the discrinator.

ExplainInformA

Yes, I agree because I myself am not so 
sure as to what its function is

AgreeDiscussC

Can you tell me more about what a 
discriminator is

ElaborationRequestB

I'm not so sureDoubtDiscussC

Do you think we need a discriminator for 
the car ownership

OpinionRequestA
Text ChatAttributeSubskillStudent

Actual HMM Training Sequence
A-Request-Opinion
A-OOA&D-Action
C-Discuss-Doubt
B-Request-Elaboration
C-Discuss-Agree
A-Inform-Explain

Actual HMM Training Sequence
A-Request-Opinion
A-OOA&D-Action
C-Discuss-Doubt
B-Request-Elaboration
C-Discuss-Agree
A-Inform-Explain

 

Figure 4. Example of a Logged Knowledge-Sharing Episode, Showing System-Coded 
Subskills, Attributes, and a Corresponding HMM Training Sequence 

In a preliminary analysis, a prototype HMM classifier was able to determine (with 
100 percent accuracy) which of the three students played the role of knowledge sharer 
during the identified knowledge-sharing episodes (Soller & Lesgold, in press). This 
analysis was performed because, if successful, it would allow the system to assign a spe-
cial set of tags to the contributions of the knowledge sharer. In Figure 4, for example, the 
tags reserved for the knowledge sharer’s contributions begin with the code “A-”. The 
contributions of other two students were arbitrarily assigned the codes “B-” and “C-”. 
Differentiating the roles of the knowledge sharer and recipients was thought to facilitate 
the system’s assessment of the episodes’ effectiveness. 

3. Hidden Markov Modeling of Knowledge Sharing 

Two 5-state HMMs were trained using the MATLAB HMM Toolbox (available 
from Kevin Murphy at http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.html). 

 14 

http://www.ai.mit.edu/%7Emurphyk/Software/HMM/hmm.html


 

Five states were chosen because preliminary analysis results showed that 3-, 4-, and 
6-state HMMs produced less favorable (although somewhat similar) results and perform-
ance declined with seven or more states. The first HMM was generated, as described pre-
viously, using only the 10 sequences of effective knowledge-sharing interaction (this will 
be termed the effective HMM), and the second HMM was generated using only the 
19 sequences of ineffective knowledge sharing, or knowledge-sharing breakdowns (the 
ineffective HMM). The ability of the HMMs to effectively model the behaviors exempli-
fied by the observation sequences was tested using a modified “take-2-out” 58-fold cross-
validation approach. Each of the observation sequences was replicated with actors B and 
C swapped so that the analysis would not reflect idiosyncrasies in the labeling of partici-
pants B and C. This resulted in a total of 58 episodes (or 29 pairs of episodes). Then, 
each test sequence and its B-C swapped pair were removed from the training set and 
tested against the two HMMs (representing effective and ineffective interaction) that 
were trained using the other 56 episodes. 

Testing the models involved computing the probability of a new knowledge-
sharing sequence—one that is not used for training—given both models. The output 
given the effective HMM described the probability that the new test sequence was effec-
tive (as defined by the training examples), and the output given the ineffective HMM 
described the probability that the test sequence was ineffective (see Figure 5). The test 
sequence was then classified as effective if it had a higher path probability through the 
effective HMM or ineffective if its path probability through the ineffective HMM was 
higher. Procedures similar to this have been used successfully in other domains, such as 
gesture recognition (Yang, Xu, & Chen, 1997) and the classification of international 
events (Schrodt, 2000). 

It is not necessarily intuitive that two probabilities, generated by models trained 
from different data sets, are comparable or even indicative of the effectiveness of a test 
sequence. The procedure discussed previously described how to obtain )|Pr( λS , the 

probability of a test sequence given an HMM. If we would like to test the effectiveness of 
a sequence, we need to compare Pr(S | λeff) to Pr(S | λineff). As long as the models are ini-
tially seeded using the same constraints, we can obtain the same result by comparing 
Pr(λeff | S) to Pr(λineff | S). Formally, we can compute Pr(λ | S) by Bayes’ Rule: 

)Pr(
)Pr()|Pr()|Pr(

S
SS λλλ = . 
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Figure 5. Schematic of Procedure for Training and Testing the HMMs To Assess the 
Effectiveness of Student Knowledge Sharing 

In comparing Pr(λeff | S) to Pr(λineff | S), the probability of the test sequence, Pr(S), 
is a constant because the same test sequence is run through both models. It can, therefore, 
be eliminated. This leaves us with the comparison of Pr(S | λeff)Pr(λeff) to Pr(S | λineff)Pr(λineff). 
Because the models’ λeff and λineff are also constants across all the test cases and do not 
differ statistically significantly (p = 0.65), they too can be eliminated, leaving us with 

)|Pr()|Pr( λλ SS ≅ . The p statistic, obtained through a Kolmogorov-Smirnov test, tells 

us that the distributions of transition probabilities in the two models do not differ 
significantly (Fisher & van Belle, 1993). Since the HMMs remain constant for all the test 
cases, it is reasonable to perform relative comparisons of Pr(λeff | S) and Pr(λineff | S), 
although the absolute magnitudes of the differences between the models may not be 
significant. In summary, it may be more computationally intuitive to think of the analysis 
that follows as a process of comparing two HMMs—one effective and one ineffective—
and determining which model best matches a given test sequence. However, because this 
is essentially the same as the more conventional terminology in which we calculate the 
likelihood of a sequence, given a model, we have adopted the latter form. 

As seen in Figure 6, 16 of the 20 effective knowledge-sharing sequences were 
correctly classified by the effective HMM, and 27 of the 38 ineffective sequences were 
correctly classified by the HMM modeling knowledge-sharing breakdowns. Overall, the 
HMM approach produced an accuracy of 74.14 percent, almost 25 percent above the 
baseline. The baseline comparison for this analysis is chance, or 50 percent, because  
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Figure 6. Results of HMM Analysis 

there was a 0.5 chance of arbitrarily classifying a given test sequence as effective or 
ineffective and the sample size was not large enough to establish a reliable frequency 
baseline. 

This analysis showed that HMMs are useful for identifying when group members 
are effectively sharing information and when they are experiencing knowledge-sharing 
breakdowns. A system based on this analysis alone could offer support and guidance 
about 74 percent of the time the students need it, which is better than guessing when stu-
dents are having trouble or basing intervention solely on students’ requests for help. The 
next step is to determine why students may be having trouble so that appropriate facilita-
tion methods can be identified and tested. The following section takes a closer look at the 
differences between the effective and ineffective sequences in order to understand the 
qualitative differences. 

4. Multidimensional Scaling (MDS) of Hidden Markov Model (HMM) 
Likelihoods 

An HMM clustering approach (Juang & Rabiner, 1985; Smyth, 1997) was used to 
develop generalized models of effective knowledge sharing and breakdowns in knowl-
edge sharing. The approach involved a combination of hidden Markov modeling, MDS 
(Shepard & Arabie, 1979), and a self-organizing clustering routine. In the first step of 
this approach, each of the knowledge-sharing episodes was used to train one HMM (in 
the traditional manner). This resulted in 29×2 paired HMMs, each pair representing a 
generalization of a particular knowledge-sharing behavior.  

Formally, each sequence, Sj, 1≤ j≤ N, was used to train one HMM, Mi, 1≤ i≤ N, 
i = j. For the effective case, Neff = 20, and, for the ineffective case, Nineff = 38. Then, the 
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log-likelihood of each sequence, Sj, given each of the HMMs, Mi, was calculated via the 
standard HMM testing procedure. This resulted in two matrices, one describing the log-
likelihoods of the effective sequences given the effective models, loglikeff(Sj | Mi) and 
another describing the log-likelihoods of the ineffective sequences given the ineffective 
models, loglikineff(Sj | Mi). The columns of these matrices described the likelihood of each 
of the sequences given a particular model, Mi; hence, similar HMMs should produce 
similar column vectors, which we will call likelihood vectors. Given this observation, it 
would make sense to cluster these column vectors and identify models that were most 
similar as model groupings. Traditional hierarchical clustering approaches, however, did 
not work well because the outlier data points caused the generation of single clusters 
from singleton data points. To deal with this problem, the data were analyzed using an 
MDS procedure in which the likelihood vectors were positioned in a multidimensional 
space that was divided into regions describing the groups of HMMs (Kruskal & Wish, 
1978; Shepard, 1980). 

The MDS approach was attractive for this research because each of the groupings 
found in the multidimensional space described a particular way in which group members 
effectively share new knowledge with each other or experience breakdowns while 
attempting to share new knowledge with each other. The full algorithm to perform the 
MDS of HMM likelihoods is described in Soller (2004). Briefly, the standard MDS pro-
cedure was applied to the HMM log-likelihood matrices, such that loglik(Sj | Mi)→Dji, 
where Dji = d(LMj, LMi) describes the Euclidean distance between the N HMM likelihood 
vectors in a three-dimensional (3-D) space (Kruskal & Wish, 1978). The likelihood vec-
tors were then assigned to groups based on the closeness of the data points in the MDS 
scaled configurations. 

The groups of scaled HMM likelihood vectors were verified using an iterative, 
self-organizing data analysis technique (ISODATA) along with a maximum distance 
threshold criteria (Looney, 1997). The maximum distance threshold enabled the algo-
rithm to ignore those points that were too far away from any of the established clusters. 
The dataset that was analyzed was small compared to the number of different ways stu-
dents can share new knowledge with each other. Even though some of the models in the 
dataset may represent single examples of certain types of interaction, only those models 
for which several examples exist can be reliably classified and analyzed. The additional 
maximum distance threshold criteria ensured that those models represented by only a 
single example would not be forced into a cluster. 
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Three groups of effective HMMs and four groups of ineffective HMMs were dis-
covered (see Figure 7). Each grouping was compared to a qualitative analysis of the stu-
dent activity in each of the groups. The episodes were first summarized blindly, without 
knowledge of the groupings. Then, the summarized episodes were compared to the clus-
ters that were found computationally. The remainder of this section describes the sort of 
interaction that occurs when students attempt to share new knowledge with each other, as 
suggested by the computational procedure. 

Group Ci :
HMM Likelihood Vectors trained using 
conversational episodes #8, #10, & #12

S: Suggest KE

R1: Doubt 
suggestion

R1 & R2: Request 
elaboration of KE

S: Explain KE 
unsatisfactorily 

(no further 
discussion of KE )

S: Suggest KE

R1: Doubt 
suggestion

R1 & R2: Request 
elaboration of KE

S: Explain KE 
unsatisfactorily 

(no further 
discussion of KE )

S: Suggest KE

R1: Doubt that it 
is needed

S: Explain KE 
unsatisfactorily

R1: Doubt again

S: Request help 
from R2

S: Suggest KE

R1: Doubt that it 
is needed

S: Explain KE 
unsatisfactorily

R1: Doubt again

S: Request help 
from R2

S: Suggest KE

R1: Doubt 
suggestion

R1 & R2: Request 
elaboration of KE

S: Explain KE 
unsatisfactorily 

(no further 
discussion of KE )

S: Suggest KE

R1: Doubt 
suggestion

R1 & R2: Request 
elaboration of KE

S: Explain KE 
unsatisfactorily 

(no further 
discussion of KE )

Episode #8

Episode #10

Episode #12

 

Figure 7. HMM Likelihood Vector Clustering for Knowledge-Sharing Breakdown Groupings 

Figure 8 shows the four generalized models that were found from the groups of 
ineffective likelihood vectors (Ai, Bi, Ci, and Di). In the first group (Ai), the sharer (stu-
dent A) first proposes that the group discuss his knowledge element. The sharer then 
proceeds to either explain the knowledge element or gives instructions to one of the 
receivers (students B or C) for applying the knowledge element concept to the exercise. 
The episode closes when the receiver(s) simply acknowledges or requests confirmation of 
his actions. In the second group (Bi), the sharer first attempts to explain his knowledge 
element. This act is followed by only acknowledgement, and no further explanation. In 
the third group (Ci), the sharer proposes his knowledge element. This act is followed by  
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1. Receiver requests information about KE
2. Sharer provides explanation
3. Receiver agrees

1. Sharer proposes KE
2. Sharer explains or gives instructions 
for action
3. Receiver acknowledges or requests 
confirmation

1. Sharer attempts to explain KE
2. Receiver acknowledges

1. Sharer proposes KE
2. Receiver doubts

1. Receiver requests explanation of KE
2. Sharer explains poorly
(no further discussion)

1. Receiver requests information about KE
2. Sharer provides explanation
3. Receiver requests further clarification
4. Sharer provides further clarification

1. Sharer explains or illustrates KE
2. Receiver motivates / encourages

IneffectiveIneffective
Knowledge SharingKnowledge Sharing

EffectiveEffective
Knowledge SharingKnowledge Sharing

1

54

321

54

321

54

321

54

32

Ai

Bi

Ci

Di

Ae

Be

Ce

 

Figure 8. Summarized HMM “Learned” Knowledge-Sharing Examples 

doubt on the part of the receivers. The blindly summarized knowledge-sharing episodes 
for group Ci and the corresponding likelihood vector grouping in the multidimensional 
space are illustrated in Figure 7. In the fourth group (Di), one of the receivers first 
requests an explanation of one of the knowledge elements, after which the sharer explains 
his knowledge element poorly, ending the discussion on the knowledge element [see 
Soller (2004) for examples of knowledge-sharing breakdowns]. 

Figure 8 also shows the three generalized models that were found from the groups 
of effective examples (Ae, Be, and Ce). Generally, the discussions in which students 
effectively shared and learned each other’s knowledge elements were marked by ques-
tioning, explanation, agreement, and motivation, whereas the discussions in which the 
students experienced breakdowns in knowledge sharing were marked by poor (inaccurate 
or incomplete) explanations, instructions for action, doubt, and acknowledgement. 

This section described a longitudinal stochastic analysis approach that combines 
HMM and MDS with a threshold-based clustering method. The approach provided 
insight into the various ways that students can share knowledge effectively and the vari-
ous ways that students can have trouble sharing new knowledge. The analysis illustrated 
how effective knowledge-sharing discussions were markedly different from discussions 
in which the students experienced knowledge-sharing breakdowns. The results of this 
analysis could serve to inform and advise an instructor in selecting an appropriate facili-
tation strategy. The next section describes an application in which a different hybrid 
combination of longitudinal stochastic methods was used to model and assess cognitive 
development. 
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D. INTERACTIVE MULTI-MEDIA EXERCISES (IMMEX) COLLABORATIVE 

IMMEX™ is a Web-based multimedia scientific learning environment that com-
bines iterative nonlinear machine learning algorithms to identify latent classes of student 
problem-solving strategies. The single-user version, which was developed at the Univer-
sity of California, Los Angeles, has been used in science classes across middle and high 
schools, universities, and medical schools in the United States over the past 12 years and 
has logged over 250,000 student problem-solving performances (Stevens & Palacio-
Cayetano, 2003). A rich portfolio of over 100 problem sets in various disciplines has 
been developed and is available online at http://www.immex.ucla.edu. 

The IMMEX Collaborative (see Figure 9), which was augmented at the Univer-
sity of Trento, Italy, also includes general-purpose collaborative Web navigation and 
synchronization facilities and a structured chat interface (Ronchetti, Gerosa, Giordani, 
Soller, & Stevens, 2005). The IMMEX Collaborative environment is designed to help 
groups of students learn how to articulate hypotheses to each other (through a structured 
chat interface) and analyze laboratory tests while solving real-world problems. For 
instance, chemistry students learn how to discern the composition of unknown substances 
resulting from a chemical spill to determine if they are dangerous. The students use sci-
entific inquiry skills to frame the problem, judge what information is relevant, plan a 
search strategy, select the appropriate physical and chemical tests to solve the problem 
(e.g., litmus, conductivity), and eventually reach a decision that demonstrates under-
standing. As the students work through the problems, the system logs their chemical and 
physical test selections, browser navigation actions, and chats. These actions then serve 
as the input vectors to self-organizing artificial neural networks (Kohonen, 2001) that are 
trained to recognize student problem-solving strategies. 

The strategies students use to solve scientific inquiry problems, in which they 
must search for and evaluate the quality of information, draw inferences, and make qual-
ity decisions, provide evidence of their knowledge and understanding of the domain. In 
this section, we show the utility of artificial intelligence methods, in particular neural net-
works and HMMs, for automatically identifying students’ individual problem-solving 
strategies and predicting their future strategies. If we can determine whether a student is 
likely to continue applying an inefficient problem-solving strategy, we may be able to 
determine whether the student will likely need help and guidance in the near future. Help  
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Reaction with Silver Nitrate

 

Figure 9. IMMEX Collaborative Interface 

might be provided through direct intervention by a teacher or a computer-based coach or 
through indirect intervention by strategically setting up and mediating peer collaboration 
situations. 

1. Item Response Theory (IRT) Modeling of Student Ability and Item Difficulty 

Students provide evidence of their problem-solving strategies through the patterns 
of actions that they take when confronted with problems of varying levels of difficulty. 
The first step in developing metrics to assess student ability and problem-solving strategy 
development was to have students perform multiple problems that vary in difficulty. 
Estimates of their ability were initially obtained through IRT analyses, which describe 
the relative difficulty of problems and abilities of students. IRT relates characteristics of 
items (item parameters) and characteristics of individuals (latent traits) to the probability 
of a positive response (e.g., solving a case). Unlike classical test theory item statistics, 
which depend fundamentally on the subset of items and persons examined, IRT item and 
person parameters are invariant. This makes it possible to examine the contribution of 
items individually as they are added and removed from a test. It also allows researchers 
to conduct rigorous tests of measurement equivalence across experimental groups. 
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Using IRT, pooled student data were used to obtain a proficiency estimate for 
each student based on whether he solved each problem. The Winsteps program (Linacre, 
2004) was used to compute proficiency scores and item difficulty estimates. Using the 
one-parameter logistic (1-pl) model as well as the two-parameter logistic (2-pl) model, 
Winsteps scales both the items and the individual examinees on the same logit (log-odds) 
scale: 
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The overall θs is an estimated proficiency based on the number of correctly 
answered items in a set. The higher the student ability, θ, the higher the probability of 
getting a more difficult item correct. The item difficulties, bj, are the difficulty estimates 
of each item. The IMMEX case item difficulties were determined by IRT analysis of 
28,878 student performances. Cases included a variety of acids, bases, and compounds, 
and the ability measures showed that the problem set presented an appropriate range of 
difficulties to provide good estimates of student ability. 

The IRT analysis only estimated a minimal amount of information about the stu-
dents’ cognitive thought processes because item score (a coarse measure) was all that 
was used; however, it provided the necessary foundation for the follow-on neural net-
work analysis (described in the next section), which performs a more fine-grained analy-
sis of students’ cognition and problem solving. 

2. Neural Network Modeling of Problem-Solving Strategies 

Statistics for over 5,000 individual problem-solving performances collected by 
the IMMEX system were used to train competitive, Self-Organizing Maps (SOMs) 
(Kohonen, 2001). A SOM is a type of unsupervised neural network that learns to group 
similar observation vectors in such a way that the nodes physically near each other 
respond similarly to like input vectors (Kohonen, 2001). In our case, the neural network 
observation (input) vectors described sequences of individual student actions during 
problem solving (e.g., Run_Blue_Litmus_Test, Study_Periodic_Table, Reaction_with_ 
Silver_Nitrate). The result of the neural network training was a topological ordering of 
neural network nodes according to the structure of the data, such that the distance 
between the nodes described the similarity of the students’ problem-solving strategies. 
For example, the neural networks identified situations in which students applied ineffec-
tive strategies (e.g., running a large number of chemical and physical tests or not 
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consulting the glossaries and background information) and effective strategies (e.g., bal-
ancing test selection with searching for background information). Other domain-specific, 
problem-specific strategies included repeatedly selecting specific tests (e.g., flame or lit-
mus tests) when presented with compounds involving hydroxides (Stevens, Soller, Coo-
per, & Sprang, 2004). From a statistical perspective, nonlinear SOMs are similar to 
nonlinear k-means clustering variants with constrained topologies. 

The resulting SOM took the form of a 36-node neural network, derived from the 
5,284 performances of university and high school chemistry students, that described the 
36 different problem-solving strategies used by the students. Each node of the network 
was represented by a histogram showing the frequency of items selected by students (see 
Figure 10). For example, 22 tests were related to Background Information (items 1–9), 
Flame Tests, Solubility, and Conductivity (items 10–12), Litmus tests (items 13, 14), 
Acid and Base Reactivity (items 15, 16), and Precipitation Reactions (items 17–22). 

 

Figure 10. One Neural Network Node Describing the Frequency of Items  
Selected by Students at That Node 

Choices regarding the number of nodes and the different architectures, neighbor-
hoods, and training parameters have been described previously (Stevens, Wang, & Lopo, 
1996). The 36 neural network nodes are represented by a 6×6 grid of 36 graphs (see  
 

 24 



 

Figure 11). The nodes are numbered 1 through 36 left-to-right and top-to-bottom. 
Forexample, the top row is comprised of nodes 1 through 6. As the neural network is 
iteratively trained, the performances are automatically grouped into these 36 nodes so 
that each node represents a different generalized subset of the population. In this case, 
each subset describes a different problem-solving strategy. These 36 classifications are 
observable descriptive classes that can serve as input to a test-level scoring process or 
linked to other measures of student achievement. They can also be used to construct 
immediate or delayed feedback to the student or aggregated cognitive statistics for the 
instructor. 

36-Node Neural Network
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 7

Node 13

Node 31

Node 19

Node 25

Node 36

 

Figure 11. A Neural Network Showing the 36 Nodes,  
Each Describing a Different Subset of the Population 

Many of th  a particular node 
represent problem elected the same 
tests (i.

e student performances that were grouped together at
-solving strategies adopted by students who always s

e., those with a frequency of 1). For instance, all Node 15 performances shown in 
the left-hand side of Figure 11 contain the items 1 (Prologue) and 11 (Flame Test). Items 
5, 6, 10, 13, 14, 15 and 18 have a selection frequency of 60–90 percent, meaning that any 
individual student performance that falls within that node would most likely contain 
some of those items. Items with a selection frequency of 10–30 percent were regarded 
more as background noise than as significant contributors to the strategy represented by 
that node. 
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The topology of the trained neural network provides information about the variety 
of different strategic approaches that students apply in solving IMMEX problems. First, it 
is not s

age of students at that node who 
success

urprising that a topology is developed based on the quantity of items that students 
select. The upper right hand of the map (nodes 6, 12) represents strategies in which a 
large number of tests are being ordered, whereas the lower left hand of the map (nodes 
25, 31) contains clusters of strategies where few tests are being ordered. There are also 
differences that reveal the quality of information that students use to solve the problems. 
Nodes situated in the lower right hand corner of Figure 11 (nodes 29, 30, 34, 35, 36) rep-
resent strategies in which students selected a large number of items but no longer needed 
to reference the Background Information (items 1–9). 

Each neural network node is associated with a corresponding solution frequency. 
The node’s solution frequency describes the percent

fully solved the problem. By linking the solution frequency to each of the neural 
network nodes, an indication of the efficiency of the different strategies can be obtained. 
Figure 12 shows the grayscale values for these nodal solution frequencies overlaid on the 
36-node neural network map. The darker shades indicate lower solution frequencies.  

Solution
frequency = 

83%

Solution
frequency = 

36%

 

Figure 12. Solution Frequencies Overlaid on the 36-Node Neural Network Map 

The figure shows that ordering all tests (nodes 5 and 6, upper right) or very few 
tests ( ghest 
solution frequency were, for the most part, reflected by a balance of selecting background 

node 25, lower left) are not efficient strategies. Effective strategies with the hi
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and tes

e vector can be identified. For 
instanc

 point-in-
time snapshots of students’ problem-solving strategies and performance. In this section, 

c learning 
trajecto

g trajectories that indicated their progress were 
develo

 3 evolved over time with practice, 
showin

t items. These were best visualized in the lower-left hand corner and the middle of 
the topology map and are exemplified by students making particularly useful associations 
among the most relevant tests for the problem at hand. 

Once the neural network is trained and the strategies represented by each node are 
defined, new performances can be tested on the trained neural network, and the strategy 
(node) that best matches the new input performanc

e, if a student were to order many different chemical and physical tests while 
solving a Hazmat (hazardous materials) case, his performance would be classified with 
the nodes of the upper right-hand corner of Figure 11, whereas a performance in which 
the student ordered very few tests would be classified along the left side of the neural 
network map. Strategies defined in this way can be aggregated by class, grade level, 
school, or gender and related to other achievement and demographic measures. 

3. Hidden Markov Modeling of Problem-Solving Strategy Development 

The neural network analysis described in the previous section provided

we describe how longitudinal HMMs were used to model and predict strategi
ries across time and problem sets. 

IMMEX problem sets contain a number of isomorphic problems (5–60) for stu-
dents to solve as they develop different chemistry skill sets. As students performed a 
series of cases from a problem set, learnin

ped. First, each student performance in the series was independently classified at 
the appropriate neural network node as described previously. Second, the sequences of 
classified student performances became the input to train an HMM. Figure 13 shows the 
neural network node classifications for four performances of four students. The numbers 
in the node sequences listed on the right-hand side of the figure correspond directly to the 
neural network nodes numbered 1–36 in Figure 11. 

By mapping these sequences to the performance characteristics at each node of 
the trained neural network, a profile of each student’s progress can be generated. For 
example, the strategic approaches of students 1 and

g a reduced reliance on background information and progressively refined test 
selections. Other students showed less strategic adaptation and continued to use the same 
or similar strategies over time. Manual inspection and mapping of nodes to strategies,  
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Figure 13. Neural Network Node Classifications for Four Performances of Four Students 

while potentially informative, is a time-consuming process. Certainly, Markov models 
provide an alternative approach for dynamically modeling this longitudinal information; 
h  

roblem-solving strate-
gies, an

owever, the 1,296 possible transitions in a 36-node map render the predictive power of
this method less convincing. Instead, HMMs were used to extend our preliminary results 
to more generally model and predict student learning trajectories. 

Figure 14 shows the overall hybrid neural network/HMM methodology. Figure 15 
shows an actual trained IMMEX HMM. The HMM training (observation) sequences 
were given by neural network classifications of different student p

d the state transitions described the likelihoods of transitioning from one general 
problem-solving strategy set to another (e.g., on the next problem set). In parallel, this 
process trained the observation symbol probability distribution, which describes the 
probabilities of each of the 36 problem-solving strategies (represented by the 36 neural 
network nodes) at each state. As a student completes a series of IMMEX problem sets, he 
will typically transit through several HMM states. At each state, the performance is mod-
eled by (a) the general category of problem-solving strategies the student is currently 
applying (given by the HMM state), (b) his specific strategy (given by the HMM obser-
vation, which is linked directly to the 6×6 neural network matrix), and (c) the next most 
likely strategy the student will apply (given by the HMM state transition matrix). 
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Student A: {Periodic Table, Litmus Test, Conductivity Test }
Student B: {Reaction w/Silver Nitrate, Flame Test }

…Individual 
Student 
Problem-
Solving Maps

1
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Strategy Classification
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0,80
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Figure 14. Individual Problem-Solving Maps (Step 1, Bottom) Are Used by SOMs  
To Identify Students’ Problem-Solving Strategies (Step 2, Middle)  

and Are Then Input to the HMM To Predict Strategy Shifts (Step 3, Top) 

 

 

Figure 15. HMM Including State Transition Probabilities and  
Observation Symbol Probabilities Given by SOMs 
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Figure  probabilities 
obtained from traini nts. The likelihood 
of trans

b-
lem-sol

 frequencies between the states was significantly different (χ2 = 131.6, p < .001). 
State 3

acy of the IMMEX HMM 

15 illustrates the state transition and observation symbol
ng the HMM with the performances of 1,790 stude

itioning from one state (generalized problem-solving strategy) to another is repre-
sented by the probabilities on the labeled arcs in the figure. The state transition prob-
abilities for states 1 (0.99), 4 (0.94), and 5 (0.95) suggest that these states are stable. 
Once students adopt strategies associated with these states, they are likely to continue to 
use them. In contrast, students who adopt state 2 and 3 strategies are less likely to persist 
with those approaches and are more likely to transition to applying other strategies. The 
highlighted nodes in each map indicate which nodes are most frequently associated with 
each state. The solution frequencies represent the correct answer on the first attempts. 

The trained HMMs thus described patterns of students’ strategy shifting over time 
and could be used to describe and explain learning trajectories and predict future pro

ving performances. For example, we might like to know whether a student is 
likely to continue using an inefficient problem-solving strategy. This information may 
enable an instructor to better assess whether the student is likely to need help in the near 
future. 

The overall solution frequency for the testing dataset was 56 percent, and the 
solution

 had a lower than average solution frequency (45 percent), and State 5 had a 
higher than average solution frequency (70 percent). The solution frequencies at each 
state provided an interesting view of progress. For instance, if we compare the differ-
ences in solve rates shown with the most likely state transitions from the matrix shown in 
Figure 15, we see that most of the students who enter state 3 (with the lowest problem-
solving rate) will likely transit either to states 2 or 4. Those students who transit from 
state 3 to state 2 will show on average a 15 percent performance increase (from 45 per-
cent to 60 percent) and those students who transit from state 3 to state 4 will show on 
average a 9 percent performance increase (from 45 percent to 54 percent). The transition 
matrix also shows that students who are performing in state 2 (with a 60 percent solve 
rate) will tend to either stay in that state or transit to state 5, showing a 10 percent per-
formance increase (from 60 percent to 70 percent). This analysis shows that students’ 
performance is increasing and that modeling with neural network and HMM methods 
enables us to track and understand their learning trajectories. 

In a previous section of this paper, we explained how HMMs can be used to pre-
dict the likelihood of future behaviors. The prediction accur

 30 



 

was tes

 shows that the prediction power of the HMM 
increas

ted by deleting the last known element from the longitudinal sequences of stu-
dents performances and asking the HMM to predict the likelihood of the missing per-
formance node. For each student performance within a sequence of performances, the 
most likely corresponding HMM state was calculated. For instance, neural network nodal 
sequence [6 18 1] mapped to HMM states (3 4 4), meaning that the student started out in 
state 3, moved to state 4, and then stayed in state 4. Then, the last sequence value was 
substituted by each of the 36 possible emissions, for instance [18 36 X], where X = 1 to 
36. The best predicted value for X was the observation sequence that yielded the maxi-
mum path likelihood for the corresponding state sequence, given the HMM. The most 
likely path probability for each of the 36 possibilities was then compared to the probabil-
ity of the sequence with the “true” value. 

Comparing the “true” values with the predicted values gives an estimate of the 
predictive power of the model. Figure 16

ed as student complete more performances. By performances 3, 4, and 5, students 
were repeatedly using similar strategies, and, by the 6th performance, the model achieved 
over 90 percent accuracy in predicting the students’ next most likely problem-solving 
strategies. 

HMM Accuracy
(% Correct Predictions)

After
1st Performance

After
2nd Performance

After
3rd Performance

After
5th Performance

After
4th Performance

After
6th Performance

67

75

83

88

86

91
 

Figure 16. HMM Accuracy in Predicting Future Problem-Solving Strategies 
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The approach described in this section was used to predict students’ future 
behaviors within the IMMEX scientific inquiry environment and provide targeted non-
intrusive facilitation. The next section offers recommendations for future work. 

E. SUMMARY AND FUTURE DIRECTIONS 

This paper presented a basic introduction to some popular stochastic analysis 
methods from an unbiased, unassociated disciplinary perspective. Examples of these 
methods were presented through two practical applications of longitudinal stochastic 
analysis to collaborative and cognitive training environments. The first application, 
EPSILON, applied a combination of latent mixed Markov modeling and MDS for mod-
eling, analyzing, and supporting the process of online student knowledge sharing. These 
analysis techniques were used to train a system to dynamically recognize (a) when stu-
dents are having trouble learning the new concepts they share with each other and 
(b) why they may be having trouble. In the second application, IMMEX Collaborative, a 
combination of iterative nonlinear machine learning algorithms was applied to identify 
latent classes of student problem-solving strategies. The approach was used to predict 
students’ future behaviors within a scientific inquiry environment and to provide targeted 
nonintrusive facilitation. 

When given enough data about a student’s previous performances, the IMMEX 
HMM performed at over 90 percent accuracy when tasked to predict the most likely 
problem-solving strategy the student will apply next. Knowing whether a student is likely 
to continue to use an inefficient problem-solving strategy allows us to determine whether 
the student is likely to need help in the near future. Perhaps more interestingly, however, 
is the possibility that knowing the distribution of students’ problem-solving strategies and 
their most likely future behaviors may allow us to strategically construct collaborative 
learning groups containing heterogeneous combinations of various behaviors such that 
intervention by a human instructor is required less often. 

These two applications demonstrated that hybrid combinations of artificial intelli-
gence and statistical mixture models can be used to perform new types of longitudinal 
analysis of learning and collaboration. Combinations of other types of models, such as 
neural nets, decision trees, and Bayesian networks have already shown their utility in 
similar educational assessment applications (e.g., see Mislevy, Steinberg, Breyer, 
Almond, & Johnson, 1999). Opportunities for exploration along these lines are unlimited. 
For example, the HMM path probabilities may be used as one factor, among others 
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obtained statistically, that contributes to a weighted assessment function (Walker, Lit-
man, Kamm, & Abella, 1997) for evaluating student interaction effectiveness. Weighted 
combinations of factors can also serve as feature vectors in decision trees or input layers 
in neural networks. 

The examples illustrated in this paper are instances of an increasing global trend 
toward interdisciplinary research. As this trend continues to grow, research that takes 
advantage of the gaps and overlaps in analytical methodologies between disciplines will 
save time, effort, and research funds. We should not be surprised to discover that many 
analytic methods commonly applied within specific disciplines are more widely applica-
ble and adaptable. 
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3-D three-dimensional 
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EM expectation maximization 

EPSILON Encouraging Positive Social Interaction while Learning 
ON-Line 

FFRDC Federally Funded Research and Development Center 

HMM hidden Markov model 

IADIS International Association for Development of the 
Information Society 

ICSI International Computer Science Institute 

IDA Institute for Defense Analyses 

IEEE Institute of Electrical & Electronics Engineers 

IMMEX Interactive Multi-Media EXercises 

IRT Item Response Theory 

ISODATA iterative, self-organizing data analysis technique 

ITS Intelligent Tutoring System 

KE knowledge element 

LCA latent class analysis 

MDS multidimensional scaling 

MIT Massachusetts Institute of Technology 

OOA&D Object-Oriented Analysis and Design 
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